
downloaded from librt.com | 1

Welcome to the fifth workshop on controlled natural languages in Aberdeen. This is the fourth

time that I’ve visited the conference, the third time that I’ve spoken at the conference and the

first time that I am invited to speak. It’s an honour to be the first speaker of the day and to be

asked by the organisation to deliver a key note presentation. That makes me feel like a special

guest. But actually I always felt a bit like a special visitor since I do not work for a research

institute while most of you do.

That is not to say that I don’t DO research. Actually that’s why I am here. To learn new things

and to be inspired. Today I would like to share with you what I have learned from you, you as in

the CNL community, what I was looking for, and what I did not find.

I will also take the time to demonstrate what I have done with the knowledge I gathered. I have

two companies, one for services and one that offers a software product. Actually what I have

learned here is an important part of how I earn my money.

About my background

But let me begin with my background. Like many others at the age of eighteen, I did not know

what to study when I finished college. I liked many things so I decided to choose an

interdisciplinary study consisting of many things.

The study combined philosophy, psychology, mathematics, information science, biology and

linguistic. It was all very new and named artificial intelligence. Nobody really understood what it

was about. My parents did not believe I could make a living after I graduated and I did not

expect an easy transition to a working life. The youth unemployment rate in those days was

26%. That was my reality.

The focus in University was on logic. My professors were old; one of them is Dirk van Dalen, now

having a Wikipedia page. He worked in the tradition of Brouwer and we spent a lot of time

thinking about modalities and possible world semantics. I liked the way you could get

submersed in these topics. And of course I liked the fact that the results were indisputable by

nature. A black and white world.



downloaded from librt.com | 2

Computational linguistics and Lambda calculus were two of the most boring and difficult

subjects. The subjects were popular though, probably because of the professor who was a very

handsome man with excellent presentation skills, named Michael Moortgat.

And of course we learned programming in the following order: functional programming (lisp),

declarative programming (prolog) and procedural programming (pascal). Later they changed

this order and had students start with a procedural language. The results were that the grades

for functional and declarative programming dropped dramatically.

We learned these language by starting with the grammar. It was like learning a language. Very

different from todays “how to … “ books for dummies. Hence we learned how to use context

free grammars and for building our expert systems we made our own context free grammars.

About my work environment

The typical organisation I work for is an administrative organisation whose products and

services depend on a non-standard and complex decision making process. The decisions have

been made by humans in the past (named subject matter experts) or systems that were created

a long time ago (named legacy systems). The decisions typically involve heuristics that are

gained by experience or must be compliant with some policy.

An example is an organisation that distributes permits. Other examples are claims processing

by insurance companies, mortgage eligibility by financial institutions, social benefits, tax

administration, clearance for a ship to enter a harbour etc.

These organisations face a couple of issues. Most of them are not able to guarantee consistency

in the operation across different departments because each department interprets policy

independent of each other. When processes are automated we see that IT has been in the lead

for years resulting in specifications that are difficult to validate, change and maintain by the

business.

Non-administrative organisations have the same issues by the way. Rules for traffic



downloaded from librt.com | 3

management, crowd control and fraud detection must be traced to policy, understandable and

explain themselves.

All this results in issues with automation. Systems are difficult to change and are blocking the

organisation’s capability to innovate. The magic word is AGILITY. My assignments are all related

to helping organisations to become more agile.

I define agility as an emerging behaviour that is related to traceability, manageability and

automate-ability. When all are good your agility is optimal. But very often you need to find a

balance between these aspects. For example: I need natural language because it’s more

manageable. I need decision tables and declarative logic because ’they’re more automate-able.

I need atomic rules because ’they’re easier to trace to policy although ’they’re not good for

manageability. While maturing and becoming an expert myself I see all the nuances of getting

to a good solution.

On logical consistency

I don’t believe anymore in the ‘ultimate’ solution. We started naive in the field of expert

systems. First of all they thought the expert himself could make his own knowledge explicit

which is like a snake eating its tail. We had this dream that there would be a constant feedback

loop between the computer and the expert. The system is to be feed with knowledge by the

expert, the system can explain it’s reasoning, the expert can then correct the knowledge when

needed. They would learn from each other to perform better as a team. But in reality I don’t

know any expert who was willing and able to realise this dream. I tried to help them. But after

passing the first hurdle of understanding the difference between a boolean and a variable and a

rule the next hurdle was logical. The created rules were redundant, inconsistent and incomplete.

So I started with LibRT to make a verification engine named VALENS that could check a set of

rules on logical redundancy, incompleteness and consistency. It turned out that IT was not

interested (they never make such mistakes …) but the business was. They wanted to know if

their rules were consistent and complete. We were happy with their request but our technology



downloaded from librt.com | 4

could not help them…. their rules were prose in a word document, legalise in a PDF document or

something that we would now call ‘user stories’.

On structured language

Around that time I learned about the business rules community. They were interested in my

work on verification, validation and more structured methods like decision tables. I was

interested in their ideas of structured natural language to write rules and involve the business.

We worked on RuleSpeak and SBVR as a way to standardise the meaning of business rules.

But I quickly realised that the big cap in the market was a tool for the business to support them

in writing and managing those rules. Customers were (and some are still) trying to be consistent

and complete in Microsoft Word or Excel. Although I know some human parsers (and some of

them are probably in this audience) … I am not a human parser and the employees of my

customers sure aren’t. So we needed a tool for the business and that’s when we started to

develop RuleXpress and I made my first visit to the CNL workshop.

I was looking for a way to express guidelines and patterns for writing rules, independent of a

specific natural language. Guidelines like a rule must start with a subject, the subject should not

be in plural and one should not combine disjunctions and conjunctions in one rule.

I did not want to program these guidelines for each language again. Could I express these

guidelines in a meta language? Did a component exist that would transform multiple natural

languages to this one meta language? The first workshop the answer was no. The second

workshop I visited I met Aarna Ranta and the answer was ‘yes’ or at least ‘in theory yes’.

Meanwhile we were working on the development of RuleXpress, got more customers and gained

a better understanding of the challenges. Let me tell you a little more about the tool and the

company.



downloaded from librt.com | 5

More about RuleXpress

RuleXpress is developed by RuleArts. RuleArts is owned by Business Rules Solutions and LibRT.

We have 50 customers licensing 500seats. Our customers are very diverse and working in

multiple domains. Our users are in the business. This makes it difficult to acquire and install

software. The IT department that is responsible for software purchase does not understand why

Microsoft word and Excel are not good enough or otherwise why you should not use some of the

tools they use for database design and system architecture.

My users are new to working in a more structured environment and when I constrain them too

much they run back to the office tools. So the tool has no syntax, no constraints, is methodology

independent and fully configurable. Many users do not follow a training and find their own way

in the product (although we prefer our customers to follow training).

Although all customers use natural language to write rules they also use many words that are

not common or not in a dictionary. The consequence is that all language support technologies

that are trained on a general corpus are not useful for me. Most of the words my customers use

are not in the corpus. So RuleArts had to develop its own language support technology features

and there is little help of standard tools and libraries.

What I learned from the CNL community

One of the first language related features that we realised is the recognition of defined nouns or

noun phrases in sentences when written in singular and plural form. Users manage a vocabulary

defining nouns or noun phrases in singular form. For each language (English, Spanish and

Dutch) we created a set of heuristics that generates the plural form based on the singular term.

Coverage differs per language, Dutch being the worst one with 85%. But we and our customers

are happy with this strategy because:

it works for all words, also words that do not exist in the dictionary.

it is very effective for our data storage and data footprint

exceptions can be handled by the end-user



downloaded from librt.com | 6

Furthermore our algorithm to recognise words will, in case of ambiguity, find the biggest match

from left to right.

The second feature is to make sure similar kinds of rules are written in a similar way. I learned

here at CNL that a context free grammar is probably good enough for the kinds of sentences we

need to parse. Characteristics of context free grammars are well known and they can be

processed quickly. For the specific case that we need anaphoric references we use a special

grammar element with special meaning.

The third challenge was to support the context free grammar in the user interface. I did a small

research project with the University of Nijmegen. The objective was to find out who performed

better: rule authors that write rules in a free form text editor and some guidelines or rule

authors working in a predictive editor based on a grammar. The result were in favour of the free

form text editor. It turned out that rule authors using the predictive editor did not correct

themselves if they started in the wrong way.

So I wanted to make a match algorithm that indicates if a rule matches a grammar pattern or if

there is a partial match with a pattern.

Given this context I use the word CNL, context free grammar and pattern as
synonyms from now on.

Inspired by examples from Rolf Schwitter who showed the strength of regular expressions in this

workshop we decided to experiment with generating regular expressions from the context free

grammar. We were afraid that the performance would not be good enough but in combination

with some tricks we receive a very acceptable performance.

The latest feature is that we recognise which defined associative relationships are used in a

sentence. The relationships between concepts are defined in advance. They are bidirectional

and can be expressed as a fact type sentence or drawn in a diagram.



downloaded from librt.com | 7

The algorithm to find matching fact types in a rule sentence makes pairs of matched terms in

the sentence and looks at the words between those concepts. The words between those

concepts should make a match with the relationship symbol of the fact type, eventually in a

different tense. We use a generally available stemmer for multiple languages (among others

English, Dutch and Spanish).

There are different kinds of relationships between concepts. We use the list of SBVR and use

some of its defined semantics to make the match smarter. For example we can find matches

based on specialization relationships where relationships are inherited from more general

concepts.

More happy customers

Typically our customers grow while using the tool. In the first stage they are very happy that the

Excel sheet is replaced with something more manageable and that the glossary automatically

matches in the rule statements. After 2 years of working to improve the organisation of the rules

and the vocabulary the next step can be made. They work with a team and need to make sure

that similar knowledge is written in the same way. So they standardise all kinds of keywords.

But when patterns are getting more complex and include other verbs than modal verbs they

need the conceptual model.

I am working in a field that changes its name every five years. While I still do the same I had to

present myself as an Expert systems programmer, RuleBased system, Knowledge engineer,

Knowledge manager and business rules analyst. Today I should be doing decisioning or decision

management but I thought I am old enough now to stop following trends. I did notice that it is

allowed again and even ‘hot’ to do artificial intelligence so I added that label recently to my

LinkedIn profile.

 What’s in a name?



downloaded from librt.com | 8

Recently a prospect asked when RuleXpress would be named ‘DecisionXpress’ and I answered

‘never’. The answer was considered ‘brave’ in a world that is dictated by hype cycles.

Actually my answer was a little longer. I answered that RuleXpress would never be named

DecisionXpress because it would narrow our market to an even smaller market and we already

support decisions. Instead I would like to broaden our market and name it ‘LanguageXpress’.

The idea of structured language based on patterns is also useful for requirements, user stories,

questions, simple agreements …. and I believe many more that we will find when we make it.

The biggest challenge to realise this vision is that my users are lawyers, traffic engineers,

accountants, policy makers, tax administrators, physicians, green energy specialists and the

like… and they can not create a context free grammar.

But the situation is even worse…. I thought that most programmers would know how to create a

context free grammar…. but the don’t. In the time that languages and interpreters had to be

created these were important courses in the curriculum of university and high school. But today

we only educate users of those languages.

Future for controlled natural languages

There is a huge opportunity for controlled natural languages in organizations. It’s a way to

involve the business and generate code, brochures, explanations, work instructions and many

more all from the same source. These will all be based on a single (or the same) interpretation

of the policy and thus organizations become more consistent and agile in their operations. We

need educated people who are able to create the controlled natural languages (patterns) and

perform transformations to different domain specific languages or presentation formats. The

research community we call that (natural) language generation.

An alternative for hand-written CNL’s is that we generate them based on a set of example

sentences. A user may guide the process and indicate which elements in a sentence must be

fixed, variable or optional. When you already have a set of sentences (and most of my

customers have) you can show all other sentences that meet the pattern and ask which of the



downloaded from librt.com | 9

pattern matches are incorrect. Will the system and the user work well together and find the

right generic pattern? Could we make a real expert system that works together with my users to

make a context free grammar without bothering my user with stupid questions? I would like to

leave this for a next research project.

The biggest surprise for me is that I did not need the methods of computational linguistics to

come this far but I did need the knowledge offered by the field of computational linguistics to

understand.

In this community I have always asked questions on how to evaluate a controlled natural

language. I thought this to be important to get acceptance for controlled natural languages. But

after writing this speech I believe it’s less important for me than I thought. When I create

patterns for my users that they don’t understand or don’t like then they will not use it. It’s as

simple as that.

I am open to any other questions now. Thank you for your attention.

Let me know if you learned something new by sharing this post.


