Different kinds of rules and how to write them properly

This column is the next in a series that provides the reader with best
practices on using or choosing a rules engine. The target audience for this
series is typically the user of a rule engine, i.e., a programmer or someone
with programming skills. All coding examples should be read as pseudo-
codeand should be easily translated to a specific target syntax for a rule
engine that supports backward and forward chaining in an object-oriented
environment.

We will discuss recommendations on the question of which different kinds of rules and
inferencing methods are (potentially) available for rule engine users. In this description the

following concepts are important:

e Attribute: symbolic representation™ used to denote a quantity or expression

e Premise: a set of conditions connected with a Boolean logical operator

e Action: one or more conclusions

¢ Condition: a programming construct that evaluates to true or false

e Conclusion: a programming construct that sets a value for an attribute or calls a method

e Rule: a programming construct that is used to describe the relationship between attributes in your
domain model
A rule can be a statement, which has to be true at all time, but it can also be a description of how
an attribute value can be derived from other attributes’ values.

¢ Inference engine: the mechanism that is able to solve the goal of your inference task with help of
the provided rules

e Rule service: the collection of inferences, rule sets, and rules that make up a service

A production rule is a programming construct that is used to describe the relationship between
attributes in your domain model. Production rules consist of one or more conditions that are
combined with a logical operator (conjunction or disjunction) and one or more conclusions.
Some rule engines only allow only one conclusion. Once a rule’s condition evaluates to true the
rule conclusion is executed. The conclusion can be an attribute value assignment; it can also be

a method-call.

downloaded from librt.com | 1



Most inference engines support different rule types with slightly different semantics. Here is an

overview.

Kinds of rule types

If-rules: In a backward chaining process the inference engine will ‘enter’ the rules through their
actions (conclusion), while in a forward chaining process the rules are ‘entered’ through their
premise (conditions). Once the conclusion of a rule is reached, the rule will not be re-evaluated

in the same session.

When-rules: When-rules are sometimes referred to as daemons, which are monitoring rules;
they will be (re)evaluated whenever the state of their premise is affected. In other words,
whenever an attribute mentioned in the premise of a daemon is changed, the rule is

(re)evaluated.

Decision tables: The decision table is a special construct that is able to bundle several if-rules in
a compound ‘statement’. Its advantage over if-rules is its readability. | often consider a decision
table to be a rule set — it’s a set of rules with similar premises and similar actions. Inference
engines are often optimized to take the shortest route through the decision table; once the

inference engine has reached a conclusion it will stop evaluating other rows.

Kinds of reasoning semantics

Backward chaining: a recursive algorithm for executing production rules

Also known as goal-driven reasoning, backward chaining seeks to establish a value of an
attribute (or “goal”) by ascertaining the truth of the conditions of production rules whose
action assigns a value to the attribute. Unknown attributes in those conditions are

considered subgoals and are similarly pursued.

Forward chaining: a class of algorithms for executing production rules
Also, known as data-driven reasoning, forward chaining executes production rules by

testing whether the rule’s condition is true. Simple forward chaining is used to assign

downloaded from librt.com | 2



attribute values based on other attribute values. More complex forward chaining algorithms
support first-order predicate calculus, i.e., quantification over instances of classes, and are

executed by means of the Rete algorithm.

Declarative logic

If-rules are the declarative counterpart of the procedural if...then...else(if)... programming
construct. The difference between the two is that in the case of if-rules the inference engine will
decide in what order the rules are evaluated. If the rules are consistent, complete, and non-

redundant one should not worry about the order of the rule statements.

When to use backward chaining

Backward chaining should be used when the rules are used to guide the user through a dialog
that gathers the required information when reasoning to conclude a goal that is known in
advance. With backward chaining only the rules that are relevant to the specific case will be

evaluated and information that is not required to make a conclusion is not derived.

When to use forward chaining

Forward chaining should be used when multiple goals (attributes) can be concluded and it is not
known in advance which of the goals must be concluded to be successful. Also, forward chaining

can be used when it is desirable to derive as much information as possible.

Constraints

If you want to define a relationship between attributes that has to be true at all times — e.qg.,

the truth of this statement has to be ‘guarded’ — you use a when-rule.

The premise of these daemons expresses the relationship, and the action establishes an

exception. Or, in rare occasions you may want to use the action to reestablish the truth.

downloaded from librt.com | 3



example when-rule

when age < 18

and application accepted

then

raise an error
end

when age < 18
then

application is not accepted
end

In this way, whenever there exists an undesired condition in your domain, you can take the

appropriate actions. I'd like to refer to my definition of declarative rule here: The daemons tend

to express instructions, rather than statements.

Decision tables

Decision tables can be used when you have a lot of rules that use the same attributes in the

condition and conclusion parts of the rule. The table really represents a set of rules where the

rule template for all rules is the same and the rules only differ in the values they test an

attribute for.

example decision table

Gender Age Risk
male <= 30 High
male > 30 High
female <=20 High
female > 20 Low

Support by different vendors is differentiated based on what is supported as an acceptable

value for the table cells. Most decision table support systems only allow a test on a numerical

value or literal in the cells. However, some vendors support the test on an attribute (variable) in

the cell of a decision table. The number of action columns can be more than 1 in some

environments, and one can often execute a function in the action column.

downloaded from librt.com | 4



This article was originally published by BRCommunity (link).

[1] See ‘symbol’: http://en.wikipedia.org/wiki/Symbol

downloaded from librt.com | 5


http://www.brcommunity.com/articles.php?id=b410
http://en.wikipedia.org/wiki/Symbol

