
downloaded from librt.com | 1

Rule history and versioning (part 3)

this column is one in a series that will provide the reader with best practices
on using or choosing a rules engine.  The following topics will be discussed
in future columns:
• magic values
• rule templates
• rule on/off
• exception handling
• what to do procedural, when to do rules
• local variables in rules
• arrays and chaining
• forward chaining over multiple instances
• backward or forward chaining?
The target audience for this series is typically the user of a rule
engine, i.e., a programmer or someone with programming skills.  All
coding examples should be read as pseudo-code and should be
easily translated to a specific target syntax for a rule engine that
supports backward and forward chaining in an object-oriented
environment.

Today we continue our discussion on how to deal with rule versioning and rule history in a

declarative way. In our first column[1] on this topic we described the characteristics of the rule

history and versioning problem, and we discussed an example and a simple solution. In our

second column[2] on this topic we discussed an efficient and declarative solution that can be

used when rules are versioned on a small number of dates (for example every year on the first

of January). Today we will discuss a strategy for dealing with rule versions that is efficient and

works if there are lots of different new versions of rules. Some rule engines have implemented a

strategy like this as basic functionality in their environment.

Solving the rule versioning problem in an advanced way

For complex rule versioning it is recommended to see a rule as an object with attributes (meta

information) and to create an object for each rule.  This allows one to specify extra information

about a rule in your object model, use inheritance to propagate certain properties of rules to a

wider range of rules, and do selections of rules based on that information.

A Rule Class would have the following class attributes:



downloaded from librt.com | 2

StartDate

date from which the rule is applicable

EndDate

date until which the rule is applicable

PostRule

Boolean attribute indicating whether the rule should be posted

RuleStatement

actual rule statement or reference to rule statement

RuleHandle*

Each rule that is posted to the inference engine receives a handle; by storing the information you

can dynamically disable and enable rules without restarting the inference engine. (This

functionality may not be supported by all rule engines)

Tasks*

information about the applicability of a rule in a certain functional context

The Attributes marked with * are not necessary to solve the rule versioning and history

problem. They are listed to give hints for further improvements of the performance of

posting rules or depend on the functionality of the rules.

The Rule Class should have a method “RuleStatement” in which the actual rule is stated or

referenced.

For each rule in the application, a subclass of the RuleClass should be created. In this class

the class attributes StartDate, EndDate, and RuleStatement get a value.

Given the above structure, the implementation of the task will have the following structure:

example code

task()start inference
rulesetmarkdate
getrules
forwardchain
end
start inference
postrules
forwardchain
goalmakeunknown(->premium)
backwardchain(->premium)
end



downloaded from librt.com | 3

The first inferblock derives the markdate and decides which rules to post. The ruleSetMarkDate

ruleset is the same as in our previous examples.  The ruleset GetRules selects the rules that

need to be posted with if-match rules (rules that consider multiple instances at a time) in the

following way:

example code

getrules()
bind r to ruleclass
ifrule getapplicablerules
ifmatch r
where
(r.startdate > markdate or isunknown(->r.startdate))
and (markdate < r.enddate or isunknown(->r.enddate))
then
r.postrule = true
end

The second inferblock posts the necessary rules with the use of a forwardchain statement and

the following rule in the ruleset PostRules:

example code

postrules()
bind r to ruleclass
ifrule getpostedrules
ifmatch r
where
r.postrule = true
then
r.rulestatement
end

After the forward chaining statement, the applicable rules are posted and the task inference can

start, in this example with a backwardchain statement on premium.

Evaluation of solution

The third solution offers a lot of flexibility; like solution 2, the solution looks more efficient

because in the final step only the applicable rules are posted. The performance gain of this

solution will depend on:



downloaded from librt.com | 4

The number of rules subject to rule versioning;

The complexity of the reasoning task in the applicable rules. If this complexity is higher, it is

expected that the gain is greater.

The solution, though, will not guarantee to give the necessary performance win. However, the

solution gives many more possibilities for increasing the performance when it is not good

enough. The strength of this solution is that it is scalable. For example, the programmer can

work with hash tables or database queries to select the rules that must be evaluated. This is the

main difference with solution 2.

A disadvantage of this approach is that you cannot use verification technology to see if there

are rules that express the same logic and have overlapping applicability periods. Verification will

be more difficult, in general.

Recommendations

In short I recommend:

Add conditions to a rule that specify versioning information when only a (small) subset of the rules

is subject to versioning. (See [1].)

Group rules in rulesets based on their applicability period when a large subset of the rules is

subject to versioning and the periods in which rules change are usually the same for these rules.

(See [2].)

Create tables or classes that allow you to store meta information for each rule, and create a

selection algorithm (eventually rules based) to select only the applicable rules. Use this solution

when a very large subset of the rules is subject to versioning and the applicability period of

individual rules is different for all these rules.

Learned something new? Let me know by sharing this post.

This article was originally published by BRCommunity (link).

http://www.brcommunity.com/articles.php?id=b387


downloaded from librt.com | 5

References

[1]  Silvie Spreeuwenberg, “Rule History and Versioning (Part 1),” Business Rules Journal,

Vol. 8, No. 11 (Nov. 2007), URL: http://www.BRCommunity.com/a2007/b375.html

[2]  Silvie Spreeuwenberg, “Rule History and Versioning (Part 2),” Business Rules Journal,

Vol. 8, No. 12 (Dec. 2007), URL: http://www.BRCommunity.com/a2007/b382.html

http://www.brcommunity.com/a2007/b375.html
http://www.brcommunity.com/a2007/b382.html

